3.3.11 \(\int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx\) [211]

3.3.11.1 Optimal result
3.3.11.2 Mathematica [C] (verified)
3.3.11.3 Rubi [A] (verified)
3.3.11.4 Maple [B] (verified)
3.3.11.5 Fricas [C] (verification not implemented)
3.3.11.6 Sympy [F(-1)]
3.3.11.7 Maxima [F]
3.3.11.8 Giac [F]
3.3.11.9 Mupad [F(-1)]

3.3.11.1 Optimal result

Integrand size = 28, antiderivative size = 155 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {14 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{39 d e^6 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {14 a^3 \sin (c+d x)}{117 d e^5 (e \sec (c+d x))^{3/2}}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}-\frac {28 i \left (a^3+i a^3 \tan (c+d x)\right )}{117 d e^2 (e \sec (c+d x))^{9/2}} \]

output
14/117*a^3*sin(d*x+c)/d/e^5/(e*sec(d*x+c))^(3/2)+14/39*a^3*(cos(1/2*d*x+1/ 
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/e 
^6/cos(d*x+c)^(1/2)/(e*sec(d*x+c))^(1/2)-2/13*I*(a+I*a*tan(d*x+c))^3/d/(e* 
sec(d*x+c))^(13/2)-28/117*I*(a^3+I*a^3*tan(d*x+c))/d/e^2/(e*sec(d*x+c))^(9 
/2)
 
3.3.11.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.31 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.94 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {a^3 \sqrt {e \sec (c+d x)} (-i \cos (3 (c+d x))+\sin (3 (c+d x))) \left (62+8 \cos (2 (c+d x))-54 \cos (4 (c+d x))+56 e^{-2 i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+42 i \sin (2 (c+d x))+63 i \sin (4 (c+d x))\right )}{468 d e^7} \]

input
Integrate[(a + I*a*Tan[c + d*x])^3/(e*Sec[c + d*x])^(13/2),x]
 
output
(a^3*Sqrt[e*Sec[c + d*x]]*((-I)*Cos[3*(c + d*x)] + Sin[3*(c + d*x)])*(62 + 
 8*Cos[2*(c + d*x)] - 54*Cos[4*(c + d*x)] + (56*Sqrt[1 + E^((2*I)*(c + d*x 
))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])/E^((2*I)*(c + 
d*x)) + (42*I)*Sin[2*(c + d*x)] + (63*I)*Sin[4*(c + d*x)]))/(468*d*e^7)
 
3.3.11.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.07, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.357, Rules used = {3042, 3978, 3042, 3977, 3042, 4256, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}}dx\)

\(\Big \downarrow \) 3978

\(\displaystyle \frac {7 a \int \frac {(i \tan (c+d x) a+a)^2}{(e \sec (c+d x))^{9/2}}dx}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \int \frac {(i \tan (c+d x) a+a)^2}{(e \sec (c+d x))^{9/2}}dx}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3977

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \int \frac {1}{(e \sec (c+d x))^{5/2}}dx}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \int \frac {1}{\left (e \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \frac {1}{\sqrt {e \sec (c+d x)}}dx}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \frac {1}{\sqrt {e \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 e^2}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \sqrt {\cos (c+d x)}dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{5 e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {7 a \left (\frac {5 a^2 \left (\frac {6 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d e^2 \sqrt {\cos (c+d x)} \sqrt {e \sec (c+d x)}}+\frac {2 \sin (c+d x)}{5 d e (e \sec (c+d x))^{3/2}}\right )}{9 e^2}-\frac {4 i \left (a^2+i a^2 \tan (c+d x)\right )}{9 d (e \sec (c+d x))^{9/2}}\right )}{13 e^2}-\frac {2 i (a+i a \tan (c+d x))^3}{13 d (e \sec (c+d x))^{13/2}}\)

input
Int[(a + I*a*Tan[c + d*x])^3/(e*Sec[c + d*x])^(13/2),x]
 
output
(((-2*I)/13)*(a + I*a*Tan[c + d*x])^3)/(d*(e*Sec[c + d*x])^(13/2)) + (7*a* 
((5*a^2*((6*EllipticE[(c + d*x)/2, 2])/(5*d*e^2*Sqrt[Cos[c + d*x]]*Sqrt[e* 
Sec[c + d*x]]) + (2*Sin[c + d*x])/(5*d*e*(e*Sec[c + d*x])^(3/2))))/(9*e^2) 
 - (((4*I)/9)*(a^2 + I*a^2*Tan[c + d*x]))/(d*(e*Sec[c + d*x])^(9/2))))/(13 
*e^2)
 

3.3.11.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3977
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[2*b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^( 
n - 1)/(f*m)), x] - Simp[b^2*((m + 2*n - 2)/(d^2*m))   Int[(d*Sec[e + f*x]) 
^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] 
&& EqQ[a^2 + b^2, 0] && GtQ[n, 1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || 
 (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (ILtQ[m, 0] & 
& LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) 
&& IntegerQ[2*m]
 

rule 3978
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)])^(n_), x_Symbol] :> Simp[b*(d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/( 
a*f*m)), x] + Simp[a*((m + n)/(m*d^2))   Int[(d*Sec[e + f*x])^(m + 2)*(a + 
b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b 
^2, 0] && GtQ[n, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
3.3.11.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 351 vs. \(2 (159 ) = 318\).

Time = 25.77 (sec) , antiderivative size = 352, normalized size of antiderivative = 2.27

method result size
risch \(-\frac {i \left (9 \,{\mathrm e}^{6 i \left (d x +c \right )}+41 \,{\mathrm e}^{4 i \left (d x +c \right )}+83 \,{\mathrm e}^{2 i \left (d x +c \right )}+219\right ) a^{3} \sqrt {2}}{936 d \,e^{6} \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}-\frac {7 i \left (-\frac {2 \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}{e \sqrt {{\mathrm e}^{i \left (d x +c \right )} \left (e \,{\mathrm e}^{2 i \left (d x +c \right )}+e \right )}}+\frac {i \sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}\, \sqrt {2}\, \sqrt {i \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}\, \sqrt {i {\mathrm e}^{i \left (d x +c \right )}}\, \left (-2 i E\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )+i F\left (\sqrt {-i \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}, \frac {\sqrt {2}}{2}\right )\right )}{\sqrt {e \,{\mathrm e}^{3 i \left (d x +c \right )}+e \,{\mathrm e}^{i \left (d x +c \right )}}}\right ) a^{3} \sqrt {2}\, \sqrt {e \,{\mathrm e}^{i \left (d x +c \right )} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}}{39 d \,e^{6} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \sqrt {\frac {e \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(352\)
default \(-\frac {2 i a^{3} \left (36 \left (\cos ^{7}\left (d x +c \right )\right )+36 \left (\cos ^{6}\left (d x +c \right )\right )+7 i \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )-13 \left (\cos ^{5}\left (d x +c \right )\right )+5 i \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )+21 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-21 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )-13 \left (\cos ^{4}\left (d x +c \right )\right )+36 i \left (\cos ^{6}\left (d x +c \right )\right ) \sin \left (d x +c \right )+42 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-42 F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+5 i \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+21 \sec \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, E\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}-21 \sec \left (d x +c \right ) F\left (i \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+21 i \sin \left (d x +c \right )+36 i \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )+7 i \cos \left (d x +c \right ) \sin \left (d x +c \right )\right )}{117 e^{6} d \left (\cos \left (d x +c \right )+1\right ) \sqrt {e \sec \left (d x +c \right )}}\) \(531\)
parts \(\text {Expression too large to display}\) \(1040\)

input
int((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x,method=_RETURNVERBOSE)
 
output
-1/936*I*(9*exp(I*(d*x+c))^6+41*exp(I*(d*x+c))^4+83*exp(I*(d*x+c))^2+219)/ 
d*a^3*2^(1/2)/e^6/(e*exp(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)-7/39*I/d*( 
-2*(e*exp(I*(d*x+c))^2+e)/e/(exp(I*(d*x+c))*(e*exp(I*(d*x+c))^2+e))^(1/2)+ 
I*(-I*(exp(I*(d*x+c))+I))^(1/2)*2^(1/2)*(I*(exp(I*(d*x+c))-I))^(1/2)*(I*ex 
p(I*(d*x+c)))^(1/2)/(e*exp(I*(d*x+c))^3+e*exp(I*(d*x+c)))^(1/2)*(-2*I*Elli 
pticE((-I*(exp(I*(d*x+c))+I))^(1/2),1/2*2^(1/2))+I*EllipticF((-I*(exp(I*(d 
*x+c))+I))^(1/2),1/2*2^(1/2))))*a^3*2^(1/2)/e^6/(exp(I*(d*x+c))^2+1)/(e*ex 
p(I*(d*x+c))/(exp(I*(d*x+c))^2+1))^(1/2)*(e*exp(I*(d*x+c))*(exp(I*(d*x+c)) 
^2+1))^(1/2)
 
3.3.11.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.94 \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\frac {{\left (336 i \, \sqrt {2} a^{3} \sqrt {e} e^{\left (i \, d x + i \, c\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, e^{\left (i \, d x + i \, c\right )}\right )\right ) + \sqrt {2} {\left (-9 i \, a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} - 50 i \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} - 124 i \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 34 i \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + 117 i \, a^{3}\right )} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{936 \, d e^{7}} \]

input
integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x, algorithm="fricas" 
)
 
output
1/936*(336*I*sqrt(2)*a^3*sqrt(e)*e^(I*d*x + I*c)*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, e^(I*d*x + I*c))) + sqrt(2)*(-9*I*a^3*e^(8*I*d*x 
+ 8*I*c) - 50*I*a^3*e^(6*I*d*x + 6*I*c) - 124*I*a^3*e^(4*I*d*x + 4*I*c) + 
34*I*a^3*e^(2*I*d*x + 2*I*c) + 117*I*a^3)*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1) 
)*e^(1/2*I*d*x + 1/2*I*c))*e^(-I*d*x - I*c)/(d*e^7)
 
3.3.11.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\text {Timed out} \]

input
integrate((a+I*a*tan(d*x+c))**3/(e*sec(d*x+c))**(13/2),x)
 
output
Timed out
 
3.3.11.7 Maxima [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}{\left (e \sec \left (d x + c\right )\right )^{\frac {13}{2}}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x, algorithm="maxima" 
)
 
output
integrate((I*a*tan(d*x + c) + a)^3/(e*sec(d*x + c))^(13/2), x)
 
3.3.11.8 Giac [F]

\[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\int { \frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3}}{\left (e \sec \left (d x + c\right )\right )^{\frac {13}{2}}} \,d x } \]

input
integrate((a+I*a*tan(d*x+c))^3/(e*sec(d*x+c))^(13/2),x, algorithm="giac")
 
output
integrate((I*a*tan(d*x + c) + a)^3/(e*sec(d*x + c))^(13/2), x)
 
3.3.11.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^3}{(e \sec (c+d x))^{13/2}} \, dx=\int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^3}{{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{13/2}} \,d x \]

input
int((a + a*tan(c + d*x)*1i)^3/(e/cos(c + d*x))^(13/2),x)
 
output
int((a + a*tan(c + d*x)*1i)^3/(e/cos(c + d*x))^(13/2), x)